
Smart Contract Code

Review And Security

Analysis Report

Customer: GraFun

Date: 25/09/2024

We express our gratitude to the GraFun team for the collaborative engagement that enabled

the execution of this Smart Contract Security Assessment.

The GraFun provides Token Sales protocol that is an Initial Coin Offering (ICO) solution,

allowing users to buy and sell tokens, and eventually it deploys PancakeSwap pair for token.

Document

Name Smart Contract Code Review and Security Analysis Report for GraFun

Audited By Grzegorz Trawinski

Approved By Ataberk Yavuzer

Website https://gra.fun/

Changelog 20/09/2024 - Preliminary Report

25/09/2024 - Final Report

Platform BNB Chain

Language Solidity

Tags Initial Coin Offering, ICO, Token Sales, ERC20, PancakeSwap

Methodology https://hackenio.cc/sc_methodology

Review Scope

Repository Hidden

Commit 504724739624914f0664f6a55e9b466cc629c4c9, dev branch

Remediation commit 1fab268195ea8fb94b2d921246fa450aa8f7addc

2

https://gra.fun/
https://hackenio.cc/sc_methodology

Audit Summary

The system users should acknowledge all the risks summed up in the risks section of the

report

6 3 3 0

Total Findings Resolved Accepted Mitigated

Findings by Severity

Severity Count

Critical 0

High 1

Medium 2

Low 3

Vulnerability Severity

F-2024-6210 - Tokens transfer causes fund loss if token sale is not finished High

F-2024-6183 - Excessive protocol fee accounting possible Medium

F-2024-6185 - Arbitrary referralLink can be provided to collect fee Medium

F-2024-6187 - The finishingTime parameter lacks input validation Low

F-2024-6191 - Lack of two-step ownership transfer pattern Low

F-2024-6209 - Lack of emergency stop mechanism Low

3

https://portal.hacken.io/App/Projects/Details/2bf73f7d-022f-433b-aeb0-a05d88a8b254/Finding/40d85e7e-840d-4bd9-b86e-d068d65c8ad2
https://portal.hacken.io/App/Projects/Details/2bf73f7d-022f-433b-aeb0-a05d88a8b254/Finding/6627661b-0ca7-423a-a880-c5ad258d6fc9
https://portal.hacken.io/App/Projects/Details/2bf73f7d-022f-433b-aeb0-a05d88a8b254/Finding/e8ec5400-644f-4985-b7e7-f4f5807d8476
https://portal.hacken.io/App/Projects/Details/2bf73f7d-022f-433b-aeb0-a05d88a8b254/Finding/a00137e7-e4b9-4d72-be6b-b0268e8e5449
https://portal.hacken.io/App/Projects/Details/2bf73f7d-022f-433b-aeb0-a05d88a8b254/Finding/46796099-cb5f-4adc-8d03-5f45ebebd628
https://portal.hacken.io/App/Projects/Details/2bf73f7d-022f-433b-aeb0-a05d88a8b254/Finding/1a6989a6-bb86-4f62-985c-fd9f859ac1b1

Documentation quality

The protocol documentation was not provided.

Code quality

The code represents clear architecture of the solution.

No NatSpecs were provided.

Test coverage

Code coverage of the project is 73.53% (branch coverage).

4

Table of Contents

System Overview 6

Privileged Roles 6

Potential Risks 7

Findings 8

Vulnerability Details 8

Observation Details 20

Disclaimers 28

Appendix 1. Definitions 29

Severities 29

Potential Risks 29

Appendix 2. Scope 30

System Overview

The Token Sales is an Initial Coin Offering (ICO) solution with the following contracts:

Token - a contract representing the ERC20 token that is a subject of the Initial Coin

Offering. The contract instance is created by means of the TokenSaleFactory contract.

TokenSaleFactory - a contract that allows users to start new Initial Coin Offering, buy

and sell tokens, redeem purchases after token sale's deadline. It also deploy the

PancakeSwap instances.

TokenSaleHelpers - a library with a set of functions used by the aforementioned

contracts.

Privileged roles

The owner of the TokenSaleFactory contract can upgrade the contract.

6

Potential Risks

Potentially Impossible Redemption: The protocol is designed to allow buy and sell tokens

until the token sale period ends. The sale period ends either when PancakeSwap instance is

deployed or deadline is reached. Whenever users transfer tokens between accounts, they lose

possibility to redeem tokens. In the event of token sale period end without PancakeSwap

instance deployment, users who did not sell tokens previously will likely encounter financial

loss, as tokens held may have no economic value.

Single Points of Failure and Control: The project is fully or partially centralized,

introducing single points of failure and control. This centralization can lead to vulnerabilities in

decision-making and operational processes, making the system more susceptible to targeted

attacks or manipulation.

Administrative Key Control Risks: The digital contract architecture relies on administrative

keys for critical operations. Centralized control over these keys presents a significant security

risk, as compromise or misuse can lead to unauthorized actions or loss of funds.

Single Entity Upgrade Authority: The token ecosystem grants a single entity the authority

to implement upgrades or changes. This centralization of power risks unilateral decisions that

may not align with the community or stakeholders' interests, undermining trust and security.

Flexibility and Risk in Contract Upgrades: The project's contracts are upgradable,

allowing the administrator to update the contract logic at any time. While this provides

flexibility in addressing issues and evolving the project, it also introduces risks if upgrade

processes are not properly managed or secured, potentially allowing for unauthorized

changes that could compromise the project's integrity and security.

Absence of Upgrade Window Constraints: The contract suite allows for immediate

upgrades without a mandatory review or waiting period, increasing the risk of rapid

deployment of malicious or flawed code, potentially compromising the system's integrity and

user assets.

7

Findings

Vulnerability Details

F-2024-6210 - Tokens transfer causes fund loss if token sale is not

finished - High

Description: The TokenSaleFactory contract allows to configure and deploy a token

sale. Within the token sale period users can buy tokens and sell

them within the TokenSaleFactory contract. When token sale is finished,

a PancakeSwap instance is deployed with WETH and token. If token

sale is not finished, users can redeem their purchases after specified

time. Also, the Token instance can be transferred between users

during the token sale. However, whenever bought tokens are

transferred to other user, the purchaser's redeem record is

decreased by the amount transferred. Also, new record is not

created for the tokens receiver.

 function _beforeTokenTransfer(address from, address to, uint256 amount) i

nternal virtual override {

 if (!_tokenSaleFactory.isFinished(address(this))) {

 require(!_restrictedAddresses[from] && !_restrictedAddresses[to],

"TSF: tokensale didn't finished");

 // Check vulnerability if user transfers token to token sale fact

ory contract

 if (from != address(_tokenSaleFactory) && to != address(_tokenSal

eFactory)) {

 _tokenSaleFactory.onTransfer(from, amount);

 }

 }

 }

 function onTransfer(address from, uint256 amount) external {

 address token = msg.sender;

 TokenSaleInfo storage tokenSale = _tokenSaleInfo[token];

 require(tokenSale.sqrtPriceX96 != 0, "TSF: call not from token");

 RedeemBalance storage redeemBalance = _redeemBalances[token][from];

 uint256 tokenBought = redeemBalance.tokenBough;

 if (tokenBought == 0) return;

 amount = _min(amount, tokenBought);

 uint256 wethSpend = redeemBalance.wethSpend;

8

https://portal.hacken.io/App/Projects/Details/2bf73f7d-022f-433b-aeb0-a05d88a8b254/Finding/40d85e7e-840d-4bd9-b86e-d068d65c8ad2

 uint256 amountToSubtract = wethSpend * amount / tokenBought;

 redeemBalance.wethSpend = wethSpend - amountToSubtract;

 redeemBalance.tokenBough = tokenBought - amount;

 tokenSale.totalWethRedeem -= amountToSubtract;

 }

This implementation has two outcomes:

The token's holder cannot redeem them anymore by means of

the redeem function, when tokens sale time is finished and

PancakeSwap instance is not created.

The token's holder cannot sell them anymore by means of the

sell function, when tokens sale time is in progress.

The redeem for such holder is not possible as redeemBalance.tokenBough

and redeemBalance.wethSpend are equal to 0.

 function redeem(address token, uint256 amount) external {

 ...

 RedeemBalance storage redeemBalance = _redeemBalances[token][msg.send

er];

 require(

 amount <= redeemBalance.tokenBough &&

 redeemBalance.wethSpend > 0 &&

 tokenSale.totalWethRedeem > 0, "TSF: overredeem"

);

 ...

The sell for such holder is not possible as _setSellRedeemValues function

reverts with panic: division or modulo by zero (0x12) error message. This

happens because the oldTokenRedeemValue variable can be equal to 0

when user had no purchased tokens before.

 function _setSellRedeemValues(

 address token,

 address user,

 uint256 tokenAmount,

 uint256 wethAmount

) internal {

 TokenSaleInfo storage tokenSale = _tokenSaleInfo[token];

 RedeemBalance storage redeemBalance = _redeemBalances[token][user

];

 uint256 oldTokenRedeemValue = redeemBalance.tokenBough;

 uint256 newTokenRedeemValue = _min(tokenAmount, oldTokenRedeemVal

ue);

 uint256 oldWethRedeemValue = redeemBalance.wethSpend;

9

 uint256 newWethRatio = oldWethRedeemValue * newTokenRedeemValue /

oldTokenRedeemValue;

 ...

As a result, in the event of the unsuccessful token sale, user

encounter funds loss as he/she holds tokens which are not

redeemable and swapable back to WETH.

Assets:

TokenSaleFactory.sol [https://github.com/dexe-network/grafun-

contrakts]

Token.sol [https://github.com/dexe-network/grafun-contrakts]

Status: Fixed

Classification

Impact: 5/5

Likelihood: 3/5

Exploitability: Independent

Complexity: Simple

Severity: High

Recommendations

Remediation: It is recommended to review the protocol's design and defined

business rules and decide whether:

Transfer of tokens should not be possible before the tokens sale

is finished.

The redeem records accounting should be updated to take into

account scenario when tokens are transferred between token

sales participants.

Resolution: The sell function is now updated, so it allows to sell tokens for

users, who did not buy them previously. (commit Id:

5b391c80379274e6dca890b486f1450016057080).

Additional comment from the Client's team:

Buy and sell work only until tokenSale is finished, this is the

expected behavior. If tokenSale come to deadline not finished,

user could redeem everything he bought but did not

transferred or sold. If Alice buys 1 token and transfers it to

10

Bob, Bob cannot redeem it but he could transfer it freely

before or after deadline or token sale end.

Evidences

Proof of Concept

Reproduce:

1. As a protocol owner, deploy and configure the solution.

2. As a creator, create new token sale instance.

3. As a user1, buy an amount of tokens.

4. As a user1, transfer bought tokens to the user2.

5. As a user2, attempt to sell tokens within token sale instance.

Observe the transaction reverts with TSF: can't redeem error.

6. Forward blockchain time so the token sale is finished

unsuccessfully.

7. As a user2, attempt to redeem tokens within token sale instance.

Observe the transaction reverts with panic: division or modulo by zero

(0x12) error.

11

F-2024-6183 - Excessive protocol fee accounting possible -

Medium

Description: Within the _buy function the protocol fee is accounted from the

wethAmount provided to the function. However, the protocol firstly

accounts the fee, then it calculates the wethAmountToReturn amount,

which should be returned to the user whenever excessive amount

was provided. The protocol accepts maximum number of tokens

equal to TOTAL_BNB_TO_COLLECT which is 31 ether.

This implementation leads to possibility of excessive fee accounted

from the tokens, which should be returned back to the user. Such

situation may happen whenever multiple users call the buy function

without proper amount set in slippage, represented by the

minTokenAmount input parameter. Whenever the TOTAL_BNB_TO_COLLECT

threshold is nearly reached, the victim user will pay overestimated

fee from provided native token and acquire low number of residual

tokens.

function _buy(

 address token,

 uint256 minTokenAmount,

 address referralLink,

 uint256 wethAmount

) internal {

 TokenSaleInfo storage tokenSale = _tokenSaleInfo[token];

 require(!isFinished(token), "TSF: tokensale finished");

 require(wethAmount > 0, "TSF: zero buy");

 uint256 fee = _calculateSwapFee(wethAmount);

 require(wethAmount > fee, "TSF: Insufficient fee");

...

 uint256 wethAmountToReturn;

 if (wethAmount + wethBalance > TOTAL_BNB_TO_COLLECT) {

 wethAmountToReturn = wethAmount - (TOTAL_BNB_TO_COLLECT - wethBal

ance);

 wethAmount = TOTAL_BNB_TO_COLLECT - wethBalance;

 }

...

 }

12

https://portal.hacken.io/App/Projects/Details/2bf73f7d-022f-433b-aeb0-a05d88a8b254/Finding/6627661b-0ca7-423a-a880-c5ad258d6fc9

Assets:

TokenSaleFactory.sol [https://github.com/dexe-network/grafun-

contrakts]

Status: Fixed

Classification

Impact: 4/5

Likelihood: 2/5

Exploitability: Independent

Complexity: Simple

Severity: Medium

Recommendations

Remediation: It is recommended to calculate the protocol fee based on the

amount of tokens which does not include amount to return in every

case.

Resolution: The fee is now adjusted and calculated correctly, based on the WETH

amount that must be returned to the buyer (commit Id:

1fab268195ea8fb94b2d921246fa450aa8f7addc).

13

F-2024-6185 - Arbitrary referralLink can be provided to collect fee

- Medium

Description: The TokenSaleFactory contract allows to set referralLink for both buy and

sell functions. Whenever an address is set, this particular wallet

receives the referrerAmount of native tokens, which decreases the

protocol fee. The referrer fee is set to 10%. However, there is no list

of allowed referrers implemented. Thus, user can set arbitrary

account, e.g. under his/her control and receive 10% of the fee back.

 function _checkReferal(address referal) internal returns (address) {

 address oldReferal = _referrees[msg.sender];

 if (oldReferal == address(0)) {

 _referrees[msg.sender] = referal;

 _referrers[referal].push(msg.sender);

 return referal;

 } else {

 return oldReferal;

 }

 }

...

 if (referralLink != msg.sender && referralLink != address(0)) {

 uint256 referrerAmount = fee * PERCENT_TO_REFERRER / ONE_HUNDREED

_PERCENTS;

 _transferETH(referralLink, referrerAmount);

 _transferETH(treasury, fee - referrerAmount);

 } else {

 _transferETH(treasury, fee);

 }

...

Assets:

TokenSaleFactory.sol [https://github.com/dexe-network/grafun-

contrakts]

Status: Accepted

Classification

Impact: 2/5

Likelihood: 5/5

14

https://portal.hacken.io/App/Projects/Details/2bf73f7d-022f-433b-aeb0-a05d88a8b254/Finding/e8ec5400-644f-4985-b7e7-f4f5807d8476

Exploitability: Independent

Complexity: Simple

Severity: Medium

Recommendations

Remediation: It is recommended to implement a whitelist of approved referrers.

This would prevent users from setting an arbitrary account under

their control and receiving a portion of the fee back.

Resolution: The Client's team claimed this finding as an expected behavior.

Therefore, the finding is accepted.

15

F-2024-6187 - The finishingTime parameter lacks input validation

- Low

Description: The finishingTime parameter within the _createTokenSale function can be

used to set the deadline when token sale has ended and redemption

of the sale process is possible. However, it lacks input validation.

Thus, this parameter can be set into the past value or to too short

time in the future. Eventually, such token sale can finish

immediately.

 function _createTokenSale(

 address token,

 string calldata metadata_,

 address referralLink,

 bool withDao,

 uint256 finishingTime,

 uint256 maxWalletAmount

) internal returns (address) {

 IToken sellToken = IToken(token);

...

 if (withDao) {

 tokenSale.finishingTime = finishingTime == 0 ? type(uint256).max

: finishingTime;

 } else {

 tokenSale.finishingTime = type(uint256).max;

 }

Assets:

TokenSaleFactory.sol [https://github.com/dexe-network/grafun-

contrakts]

Status: Fixed

Classification

Impact: 3/5

Likelihood: 2/5

Exploitability: Independent

Complexity: Simple

Severity: Low

16

https://portal.hacken.io/App/Projects/Details/2bf73f7d-022f-433b-aeb0-a05d88a8b254/Finding/a00137e7-e4b9-4d72-be6b-b0268e8e5449

Recommendations

Remediation: It is recommended to validate the finishingTime parameter to ensure

that it is not set to a past value or to a very short time in the future.

This can be implemented by adding an assertion like this:

require(finishingTime > block.timestamp + minimumTime, "finishingTime is too

soon");

Where minimumTime is a predefined constant that represents the

minimum acceptable duration for the token sale. This will prevent

the token sale from finishing immediately after it is created.

Resolution: The input validation is now improved. The finishingTime parameter

can be set to 0 or must be set above current block.timestamp (commit

Id: 5b391c80379274e6dca890b486f1450016057080).

17

F-2024-6191 - Lack of two-step ownership transfer pattern - Low

Description: The TokenSaleFactory implements single step of ownership transfer. In

the event of a transfer to invalid address, the transfer is immediate

and the authority is lost. Thus, access to all functionalities protected

by the restricted modifier will be permanently lost.

contract TokenSaleFactory is OwnableUpgradeable, UUPSUpgradeable {

...

Assets:

TokenSaleFactory.sol [https://github.com/dexe-network/grafun-

contrakts]

Status: Accepted

Classification

Impact: 5/5

Likelihood: 1/5

Exploitability: Dependent

Complexity: Simple

Severity: Low

Recommendations

Remediation: It is recommended to implement two-step ownership transfer. In the

first step a new proposal address should be provided. In the second

step the proposal address should confirm the transfer. This can be

achieved by importing OpenZepplin's Ownable2StepUpgradeable .

Resolution: The Client's Team accepted the finding.

18

https://portal.hacken.io/App/Projects/Details/2bf73f7d-022f-433b-aeb0-a05d88a8b254/Finding/46796099-cb5f-4adc-8d03-5f45ebebd628

F-2024-6209 - Lack of emergency stop mechanism - Low

Description: The TokenSaleFactory contract does not implement any emergency stop

mechanism. This means that whenever the protocol will be under

adversary attack the temporary halt of the processing will be not

possible, until the protocol is upgraded. Thus, key functions such as

buy and sell could be continuously exploited.

contract TokenSaleFactory is OwnableUpgradeable, UUPSUpgradeable {

Assets:

TokenSaleFactory.sol [https://github.com/dexe-network/grafun-

contrakts]

Status: Accepted

Classification

Impact: 2/5

Likelihood: 2/5

Exploitability: Independent

Complexity: Simple

Severity: Low

Recommendations

Remediation: It is recommended to implement emergency stop mechanism. This

can be achieved by importing OpenZepplin's PausableUpgradable

contract and making use of whenNotPaused modifier.

Resolution: The Client's Team accepted the finding.

19

https://portal.hacken.io/App/Projects/Details/2bf73f7d-022f-433b-aeb0-a05d88a8b254/Finding/1a6989a6-bb86-4f62-985c-fd9f859ac1b1

Observation Details

F-2024-6179 - The _tokenSaleFactory can be immutable - Info

Description: The _tokenSaleFactory is set only once in the constructor, thus it can be

set as immutable .

The immutable variables can only be assigned during contract creation

(inside the constructor). Once assigned, their value cannot be

changed. This is a good practice for variables that should not change

after the contract is deployed.

Assets:

Token.sol [https://github.com/dexe-network/grafun-contrakts]

Status: Fixed

Recommendations

Remediation: It is recommended to mark the ITokenSaleFactoryMin as immutable:

ITokenSaleFactoryMin internal immutable ITokenSaleFactoryMin;

Resolution: The ITokenSaleFactoryMin state variable is now set to immutable

(commit Id: 5b391c80379274e6dca890b486f1450016057080).

20

https://portal.hacken.io/App/Projects/Details/2bf73f7d-022f-433b-aeb0-a05d88a8b254/Finding/e8f26afb-77e5-47e3-8768-5768953610c4

F-2024-6181 - The Ownable inheritance is redundant - Info

Description: The Token contract inherits from the Ownable library. This is done only

to protect addRestricted function call used within the restrictAddresses

function. However, the Token contract already saves the value of the

TokenSaleFactory instance in the _tokenSaleFactory parameter, which can

be used to protect the addRestricted function against unauthorised

access.

Assets:

Token.sol [https://github.com/dexe-network/grafun-contrakts]

Status: Accepted

Recommendations

Remediation: It is recommended to remove the Ownable library usage to save some

Gas and use the _tokenSaleFactory state variable for the purpose of the

authorisation.

Resolution: The Client's Team accepted the finding.

21

https://portal.hacken.io/App/Projects/Details/2bf73f7d-022f-433b-aeb0-a05d88a8b254/Finding/863e1270-0d4e-4c13-923a-72680d236c85

F-2024-6182 - TokenSaleFactory implementation is not disabled -

Info

Description: The TokenSaleFactory contract is upgradable, however, it does not

disable the implementation. Thus, the implementation can be

hijacked by the threat actor and leveraged for the further attacks,

such as phishing. The finding was reported as a deviation from

leading security practices.

contract TokenSaleFactory is OwnableUpgradeable, UUPSUpgradeable {

...

 constructor(

 address v3Factory,

 address weth

) {

 PANCAKE_V3_FACTORY = v3Factory;

 WETH = weth;

 }

 function __TokenSaleFactory_init(address _treasury, address _poolFactory)

public initializer {

 __Ownable_init();

 treasury = _treasury;

 poolFactory = _poolFactory;

 }

Assets:

TokenSaleFactory.sol [https://github.com/dexe-network/grafun-

contrakts]

Status: Accepted

Recommendations

Remediation: It is recommended to disable the implementation by means of the

_disableInitializers() function.

 constructor(

 address v3Factory,

 address weth

) {

 PANCAKE_V3_FACTORY = v3Factory;

 WETH = weth;

22

https://portal.hacken.io/App/Projects/Details/2bf73f7d-022f-433b-aeb0-a05d88a8b254/Finding/3011945d-2b07-46ea-b95f-dcf34526ed71

 _disableInitializers()

 }

Resolution: The Client's Team accepted the finding.

23

F-2024-6186 - The RedeemBalance struct has typo - Info

Description: The RedeemBalance has typo: the parameter name should be tokenBought

instead of tokenBought

 struct RedeemBalance {

 uint256 tokenBough;

 uint256 wethSpend;

 }

Assets:

TokenSaleFactory.sol [https://github.com/dexe-network/grafun-

contrakts]

Status: Accepted

Recommendations

Remediation: The typo in the RedeemBalance struct should be corrected to ensure that

the code is accurate and functions as expected. The parameter

name tokenBough should be changed to tokenBought . This change should

be propagated throughout the codebase to ensure that all references

to this struct are accurate.

Resolution: The Client's Team accepted the finding.

24

https://portal.hacken.io/App/Projects/Details/2bf73f7d-022f-433b-aeb0-a05d88a8b254/Finding/e2e87b2e-b2b8-4457-9059-070cc4161a3c

F-2024-6189 - Lack of Monitoring on Key Functions - Info

Description: The protocol currently lacks monitoring for its key functions,

specifically buy , sell , redeem and transferOwnership . Without proper

monitoring, it is challenging to detect and respond to unauthorized

activities, irregular behaviors, or potential hacking attempts in real

time. This absence of surveillance increases the risk of undetected

exploits or issues that could compromise the contract's security and

integrity.

Assets:

TokenSaleFactory.sol [https://github.com/dexe-network/grafun-

contrakts]

TokenSaleHelpers.sol [https://github.com/dexe-network/grafun-

contrakts]

Status: Accepted

Recommendations

Remediation: It is recommended to implement a comprehensive monitoring

mechanism for the key functions buy , sell , redeem and

transferOwnership . within the protocol. Continuous monitoring of these

functions is essential to ensure that the contract operates as

intended and to detect any anomalies or unauthorized activities in

real time. By closely observing these critical areas, it is possible to

identify and respond promptly to any signs of hacking or unusual

behavior. This proactive approach not only helps in maintaining the

integrity and security of the smart contract but also provides an

additional layer of assurance for all stakeholders involved.

Resolution: The Client's Team accepted the finding.

25

https://portal.hacken.io/App/Projects/Details/2bf73f7d-022f-433b-aeb0-a05d88a8b254/Finding/4cda6094-f5ef-46d7-9ddf-c8bd0f16cf52

F-2024-6193 - Lack of IERC20 transfer/transferFrom return value

check - Info

Description: Within the TokenSaleFactory multiple instances of IERC20 's transfer() and

transferFrom() methods usage were observed to handle token

transfers. However, no return value is checked upon finishing the

transfer. As the protocol aims to be used with WBNB token and custom

EIP-20 compliant token, this finding is reported as a deviation from

leading security practices.

...

 tokenContract.transfer(treasury, TOTAL_SUPPLY * INCENTIVE_FEE / ONE_H

UNDREED_PERCENTS); //@audit no safetransfer

...

 tokenContract.transfer(daoAddress, sentToDao);

...

 if (amount0Owed > 0) {

 IERC20(token0).transfer(msg.sender, amount0Owed);

 }

 if (amount1Owed > 0) {

 IERC20(token1).transfer(msg.sender, amount1Owed);

 }

...

Assets:

TokenSaleFactory.sol [https://github.com/dexe-network/grafun-

contrakts]

TokenSaleHelpers.sol [https://github.com/dexe-network/grafun-

contrakts]

Status: Accepted

Recommendations

Remediation: It is recommended to use OpenZeppelin’s SafeERC20 library, which

provides safeTransfer() and safeTransferFrom() functions that handle

standard and non-standard cases gracefully. SafeERC20 wraps the

standard ERC20 functions and ensures compatibility with both

standard-compliant and non-compliant tokens. Additionally, SafeERC20

methods automatically perform the necessary checks for allowance

and balance, making the code cleaner and more concise.

26

https://portal.hacken.io/App/Projects/Details/2bf73f7d-022f-433b-aeb0-a05d88a8b254/Finding/72ffc1ab-2973-4e79-82be-b3c4a37e19da

Resolution: The Client's Team accepted the finding.

27

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at

the time of the writing of this report, with cybersecurity vulnerabilities and issues in smart

contract source code, the details of which are disclosed in this report (Source Code); the

Source Code compilation, deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and

security of the code. The report covers the code submitted and reviewed, so it may not be

relevant after any modifications. Do not consider this report as a final and sufficient

assessment regarding the utility and safety of the code, bug-free status, or any other contract

statements.

While we have done our best in conducting the analysis and producing this report, it is

important to note that you should not rely on this report only — we recommend proceeding

with several independent audits and a public bug bounty program to ensure the security of

smart contracts.

English is the original language of the report. The Consultant is not responsible for the

correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its

programming language, and other software related to the smart contract can have

vulnerabilities that can lead to hacks. Thus, the Consultant cannot guarantee the explicit

security of the audited smart contracts.

28

Appendix 1. Definitions

Severities

When auditing smart contracts, Hacken is using a risk-based approach that considers

Likelihood, Impact, Exploitability and Complexity metrics to evaluate findings and score

severities.

Reference on how risk scoring is done is available through the repository in our Github

organization:

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the

loss of user funds or contract state manipulation.

High

High vulnerabilities are usually harder to exploit, requiring specific conditions, or

have a more limited scope, but can still lead to the loss of user funds or contract

state manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most

cases, cannot lead to asset loss. Contradictions and requirements violations. Major

deviations from best practices are also in this category.

Low

Major deviations from best practices or major Gas inefficiency. These issues will

not have a significant impact on code execution, do not affect security score but

can affect code quality score.

Potential Risks

The "Potential Risks" section identifies issues that are not direct security vulnerabilities but

could still affect the project’s performance, reliability, or user trust. These risks arise from

design choices, architectural decisions, or operational practices that, while not immediately

exploitable, may lead to problems under certain conditions. Additionally, potential risks can

impact the quality of the audit itself, as they may involve external factors or components

beyond the scope of the audit, leading to incomplete assessments or oversight of key areas.

This section aims to provide a broader perspective on factors that could affect the project's

long-term security, functionality, and the comprehensiveness of the audit findings.

29

https://github.com/hknio/severity-formula/blob/main/README.md

Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository Hidden

Commit 5047247

Remediation commit 1fab2681

Whitepaper N/A

Requirements N/A

Technical Requirements N/A

Contracts in Scope

./contracts/Token.sol

./contracts/TokenSaleFactory.sol

./contracts/TokenSaleHelpers.sol

./contracts/libs/SqrtPriceX96.sol

30

